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Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and
cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A2A antagonists
can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting
reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies
investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist
pilocarpine. While the adenosine A2A antagonist MSX-3 was incapable of reversing the tremulous jaw
movements induced by the 4.0 mg/kg dose of pilocarpine, both MSX-3 and the adenosine A2A antagonist
SCH58261 reversed the tremulous jaw movements elicited by 0.5 mg/kg pilocarpine. Systemic administra-
tion of the adenosine A1 antagonist DPCPX failed to reverse the tremulous jaw movements induced by either
an acute 0.5 mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that
the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses
of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A2A receptors, but DPCPX did not. The
results of these studies support the use of adenosine A2A antagonists for the treatment of tremor.
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1. Introduction

Although resting tremor is considered to be one of the hallmark
symptoms of parkinsonism, relatively little is known about the neural
mechanisms underlying tremorogenesis (Bergman and Deuschl,
2002; Deuschl et al., 2001). Depletion of striatal dopamine (DA) is
recognized as the primary condition leading to the development of
the motor symptoms of idiopathic Parkinson's disease (Hornykiewicz,
1973), and the blockade of DA transmission produced by antipsy-
chotic drugs leads to the development of drug-induced parkinsonism
(Marsden et al., 1975; Alkelai et al., 2009). Nevertheless, striatal DA
interacts with several other transmitters, including GABA, glutamate,
serotonin, adenosine, and acetylcholine (ACh; Delong, 1990; Hauber,
1998; Obeso et al., 2000; Young and Penney, 1993). For example, the
neostriatum contains cholinergic interneurons and expresses several
subtypes of muscarinic receptors (Hersch et al., 1994; Ince et al.,
1997). Muscarinic antagonists suppress parkinsonian symptoms,
including akinesia and tremor (Aquilonius, 1980; McEvoy, 1983).
Cholinomimetic drugs are known to be tremorogenic (Brimblecombe,
1975; Dronfield et al., 2000; Liston et al., 2004; Salamone et al., 2001),
and several clinical studies have reported that cholinomimetics can
induce or exacerbate parkinsonian symptoms, including tremor, in
humans (Aarsland et al., 2003; Arai, 2000; Bourke and Drukenbrod,
1998; Cabeza-Alvarez et al., 1999; Duvoisin, 1967; Gurevich et al., 2006;
Iwasaki et al., 1988; Kao et al., 1993; Keltner, 1994; McSwain and
Forman, 1995;Ott andLannon, 1992; Shea et al., 1998; Songet al., 2008).

In addition to studying interactions between DA and ACh, much
emphasis has been placed upon characterizing the functional
significance of striatal adenosine (Bara-Jimenez et al., 2003; Ferré
et al., 1997, 2001, 2004; Mally and Stone, 1996, 1998; Morelli and
Pinna, 2002; Salamone et al., 2008b; Simola et al., 2006; Stromberg
et al., 2000; Svenningsson et al., 1999). The adenosine A2A receptor
subtype is expressed to a high degree in the neostriatum, particularly
on the enkephalin-positive striatopallidal neurons that co-express DA
D2 receptors (Fink et al, 1992; Fuxe et al, 2007; Rosin et al, 1998;
Schiffman et al, 1991; Svenningsson et al, 1999). Adenosine A2A

antagonists have been evaluated in human clinical studies to assess
their antiparkinsonian actions (Bara-Jimenez et al., 2003; Jenner,
2005; LeWitt et al., 2008). Furthermore, research with animal models
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has demonstrated that antagonism of adenosine A2A receptors can
produce motor effects that are consistent with antiparkinsonian
actions (Aoyama et al., 2000; Betz et al., 2009; Correa et al., 2004;
Ferré et al., 2001; Ishiwari et al., 2007; LeWitt et al., 2008; Morelli and
Pinna 2002; Pinna et al., 2005; Salamone et al., 2008a,b; Schwarzs-
child et al., 2002; Simola et al., 2004; Tronci et al., 2007). Adenosine
A2A antagonists have been shown to reverse the hypolocomotion,
catalepsy, and muscle rigidity that are induced by interference with
striatal DA transmission (Correa et al., 2004; Hauber et al., 2001;
Ishiwari et al., 2007; Salamone et al., 2008a,b; Wardas et al., 2001;
Trevitt et al., 2009a).

Several animal models have been used to assess motor functions
related to parkinsonism (Avila et al., 2009; Castañeda et al., 2005;
Pollack and Thomas, 2010), and research employing animal models of
tremor also can contribute greatly to our understanding of the
neurochemical regulation of tremorogenesis (Miwa 2007; Salamone
et al., 1998; Wilms et al., 1999). For this reason, the present studies
focused upon the ability of adenosine A2A antagonists to attenuate
drug-induced tremulous jawmovements, which are a rodentmodel of
parkinsonian tremor that has been extensively employed (Cenci et al.,
2002; Cousins et al., 1998; Ishiwari et al., 2005; Miwa et al., 2008,
2009; Rodriguez Diaz et al., 2001; Salamone et al., 1990, 1998, 2001,
2005, 2008a,b; Simola et al., 2004, 2006; Vanover et al., 2008). These
movements are defined as repetitive vertical deflections of the lower
jaw that resemble chewing but are not directed at a particular stimu-
lus (Salamone et al., 1998). As shown by studies using videotape
analyses or electromyographic methods, these movements occur
largely within the 3–7 Hz frequency range that is characteristic of
parkinsonian resting tremor (Cousins et al., 1998; Finn et al., 1997;
Ishiwari et al., 2005; Mayorga et al., 1997), and can be induced by a
number of conditions that parallel the neurochemistry of the pathol-
ogy of parkinsonism, including striatal DA depletion, DA antagonism,
anticholinesterases and muscarinic agonists (Baskin and Salamone,
1993; Betz et al., 2005; Cousins et al., 1998; Finn et al., 1997; Ishiwari
et al., 2005; Jicha and Salamone 1991; Mayorga et al., 1997; Rodriguez
Diaz et al., 2001; Salamone and Baskin, 1996; Salamone et al., 1990,
1998, 2005, 2008a; Steinpreis et al., 1993; Trevitt et al., 1998).
Dopaminergic antiparkinsonian drugs such as apomorphine, L-DOPA,
bromocriptine, pergolide, and ropinirole can reduce cholinomimetic-
induced tremulous jaw movements (Cousins et al., 1997; Salamone
et al., 2005), and their potency for suppressing cholinomimetic-
induced tremulous jaw movements is highly correlated (r=0.88)
with the clinical potency of these drugs for reducing parkinsonian
tremor in humans (Salamone et al., 2005). Tremulous jawmovements
are sensitive to several other classes of antiparkinsonian drugs,
including anticholinergics and adenosine A2A antagonists (Baskin and
Salamone 1993; Betz et al., 2007, 2009; Correa et al., 2004; Cousins
et al., 1997; Salamone et al., 1998, 2008a; Simola et al., 2004, 2006;
Steinpreis et al., 1993; Tronci et al., 2007).

Although it is clear that adenosine A2A antagonists can reduce the
tremulous jaw movements induced by DA antagonists and DA
depletion (Correa et al., 2004; Salamone et al., 2008a,b; Betz et al.,
2009; Trevitt et al., 2009b), there are conflicting reports about the
interaction between adenosine antagonists and cholinomimetic drugs.
Some studies have demonstrated that adenosine A2A antagonists are
capable of reducing the oral tremor induced by the anticholinesterase
tacrine (Simola et al., 2004, 2006; Tronci et al., 2007), while a recent
paper reported that adenosine antagonists were ineffective at
reducing tacrine-induced tremulous jaw movements (Trevitt et al.,
2009b). Only one study has examined the ability of an adenosine A2A

antagonist to suppress the tremulous jaw movements induced by a
muscarinic agonist; in that study Simola et al. (2006) observed that the
adenosine A2A antagonist SCH 58261 failed to suppress the tremulous
jaw movements induced by 1.0 mg/kg of the muscarinic agonist
pilocarpine. Therefore, the present experiments studied the ability of
adenosine antagonists to attenuate the tremorogenic effects of the
muscarinic agonist pilocarpine (Finn et al., 1997; Salamone et al., 1986,
1998, 2001; Simola et al., 2006). The first experiment used both
behavioral and electromyographic (EMG)methods to study the effects
of two doses of pilocarpine; a high dose that has been studied
previously (4.0 mg/kg IP), and a low dose (0.5 mg/kg IP) that has not
previously been used in studies of tremulous jaw movements. EMG
methodswere used to assess the local frequency of the jawmovement
activity within bursts. The second and third experiments investigated
the ability of the adenosine A2A antagonist MSX-3 (2.5–20 mg/kg)
to reverse the tremulous jaw movements induced by either the low
(0.5 mg/kg) or high (4.0 mg/kg) doses of pilocarpine; it was hypoth-
esized that an adenosine A2A antagonist could more easily reverse the
effect of a low dose of pilocarpine than a high dose. The fourth
experiment studied the ability of another adenosine A2A antagonist,
SCH 58261, to reverse the tremulous jaw movements induced by
0.5 mg/kg pilocarpine. Experiment 5 studied the effects of the
adenosine A1 antagonist DPCPX on the jaw movements induced by
0.5 mg/kg pilocarpine. Because the results indicated that DPCPX did
not suppress pilocarpine-induced jaw movements, experiment 6
investigated the effect of DPCPX on pimozide-induced jaw move-
ments. Several recent studies have shown that pimozide-induced jaw
movements are attenuated by adenosine A2A antagonists (Salamone
et al., 2008a; Betz et al., 2009), but the effect of DPCPX has not been
determined. In the final experiment, in vivo binding assays were
performed to investigate the adenosine A2A receptor occupancy of
each of the adenosine antagonists utilized in the present studies.

2. Materials and methods

2.1. Animals

For the behavioral pharmacology experiments, a total of 201 male
Sprague–Dawley rats (Harlan Sprague–Dawley, Indianapolis, IN) with
no prior drug experience were used in the present experiments. The
rats weighed 350–450 g during the course of the experiment and had
ad libitum access to lab chow and water. They were group-housed in a
colony that wasmaintained at approximately 23 °C and had a 12-hour
light/dark cycle (lights on at 0700 h). These studies were conducted
according to University of Connecticut and NIH guidelines for animal
care and use. For the in vivo occupancy studies, male Sprague–Dawley
rats (weighing 180–200) supplied from Charles River (Germany)
were used. The animals were housed 3 per cage in Makrolon cages
(20 cm×35 cm) with one plastic house for enrichment. They were
kept in an animal room in which temperature (21±2 °C), relative
humidity (55±5%) and a 12-hour light/dark cycle (lights on at
06.00 h) were automatically controlled. Food and water were avail-
able ad libitum. The rats had a minimum of 5 days adaptation to the
animal facility prior to the initiation of experiments and the animals
were taken to the experimental room the day before the experiment.
Ethical permission for the procedures used in these studies was
granted by the animal welfare committee, appointed by the Danish
Ministry of Justice and all animal procedures were carried out in
compliance with EC Directive 86/609/EEC and with Danish law
regulating experiments on animals.

2.2. Drugs

Pimozide, pilocarpine, and DPCPX were purchased from Sigma
Aldrich Chemical (St. Louis,MO). Pimozidewas dissolved inwarm0.3%
tartaric acid. Pilocarpine was dissolved in 0.9% saline. Because it is not
highly water soluble, DPCPX (8-cyclopentyl-1,3-dipropylxanthine)
was dissolved in a 20:80 solution of 100% ethanol:room temperature
0.9% saline (Salamone et al., 2009). MSX-3 ((E)-phosphoric acid
mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-
prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl] ester) was synthe-
sized at the Pharmazeutisches Institut (Universität Bonn; Bonn,
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Germany (see Sauer et al., 2000; Hockemeyer et al., 2004). MSX-3was
dissolved in 0.9% saline. The pH of the MSX-3 solution was adjusted
by adding 1.0 N NaOH until the drug was completely in solution
after conversion to its disodium salt (pH 7.1–7.4). SCH 58261 was
purchased from Tocris Chemical (Bristol, England) and dissolved in a
20:80 solution of 100% ethanol:room temperature 0.9% saline.

2.3. Selection of doses and treatment procedures

The subchronic 1.0 mg/kg (IP) pimozide treatment procedure
selected for the present studies was based upon previously published
experiments (Salamone et al., 2008a; Ishiwari et al., 2005). The
procedure of screening animals by assessing them for tremulous jaw
movements the day before the drug challenge day (i.e. on day 7) was
the same as that used in a previous study (Salamone et al., 2008a), and
was done in order to ensure a robust jaw movement response on the
drug challenge day (i.e., day 8). No animals failed to show a sub-
stantial jaw movement response to pimozide (i.e., b15 tremulous jaw
movements) on day 7. Pilocarpine- induced tremulous jaw move-
ments have been previously reported to occur after acute adminis-
tration (Betz et al., 2007; Salamone et al., 2001; Mayorga et al., 1997;
Finn et al., 1997; Stewart et al., 1988; Salamone et al., 1986), and the
specific high (4.0 mg/kg) and low (0.5 mg/kg) doses used in the
present studies were determined based upon these published studies
and the first experiment. Doses of MSX-3 used in experiments 2 and 3
were selected based upon pilot data and on previous studies with the
tremulous jaw model and with locomotion (Salamone et al., 2008a;
Ishiwari et al., 2005). The doses of the adenosine A1 antagonist DPCPX
used in experiments 5 and 6 were based upon extensive pilot work in
our lab, and are similar to the doses used in another recent study of
the effect of DPCPX on food-reinforced tasks (Mott et al., 2009;
Salamone et al., 2009). The doses of SCH58261 used in experiment 4
were based upon doses reported in a previously published study that
employed the tremulous jaw movement model (Simola et al., 2004).
For the in vivo binding studies, MSX-3, DPCPX, and SCH58261 were
injected IP 20, 30 or 30 min respectively before the animals were
sacrificed.

2.4. Behavioral procedures

2.4.1. Tremulous jaw movements
Observations of rats took place in a 30×30×30 cm clear Plexiglas

chamber with a wire mesh floor, which was elevated 42 cm from the
table top. This allowed for the viewing of the animal from several
angles, including underneath. Tremulous jaw movements were
defined as rapid vertical deflections of the lower jaw that resembled
chewing but were not directed at any particular stimulus (Salamone
et al., 1998). Each individual deflection of the jaw was recorded using
a mechanical hand counter by a trained observer, who was blind to
the experimental condition of the rat being observed. Separate studies
with two observers demonstrated an inter-rater reliability of r=0.97
(pb0.05) using these methods.

2.4.2. EMG electrode implantation, recording, and analysis of tremulous
jaw movements

Rats were anesthetized and two electrodes of 50.0 μm tungsten
wire (California FineWire, Grover Beach, CA) were implanted approx-
imately 1.0 mm deep with a 27-gauge needle into each temporalis
muscle (for a total of four electrodes). Previous research has demon-
strated that the temporalis muscle is the jaw muscle that shows
activity most closely related to tremulous jaw movements (Cousins
et al., 1998). All electrodes were then attached to a female pin
(Omnetics, Minneapolis, MN) secured in a rectangular five by four pin
array. Two stainless steel watch screws served as indifferent and
ground electrodes. The ensemble was fastened to the skull with two
additional screws and cranioplastic cement. Following electrode
implantation, rats were allowed one week to recover. On the test
day, rats received an injection of either 4.0 mg/kg pilocarpine or
0.5 mg/kg pilocarpine. Ten minutes later, recordings were performed
for 15min. During the recording session, the animals were connected
to the recording apparatus by a multi-wire cable that was attached to
a pulley system in the ceiling. All recordingswere performed using the
Cheetah 16 recording system and Cheetah Data Acquisition Software
(Neuralynx, Bozeman, MT). During the recording session, a trained
observer recorded tremulous jawmovements. At the conclusion of the
recording session, data was examined using the Neuraview program
(Neuralynx, Bozeman, MT), which allowed for the simultaneous
viewing of EMG traces and tremulous jaw movement event record-
ings. Traces were then imported into Matlab 7.0.1, bandpass filtered
between 300 and 1500 Hz, and plotted graphically.

2.5. Experiments

2.5.1. Experiment 1: Effects of low or high doses of pilocarpine
A group of 5 rats was used to assess the effect of a low dose

of pilocarpine (0.5 mg/kg IP) and a high dose of pilocarpine that
was used in previous experiments (4.0 mg/kg). All rats received IP
injections of 1.0 ml/kg saline, 0.5 mg/kg pilocarpine, or 4.0 mg/kg
pilocarpine, once per week, in a randomly varied order. Immediately
after IP injection, rats were placed in the Plexiglas observation
chamber and allowed to habituate for 10 min. Following habituation,
tremulous jaw movements were counted for 15 min, with this obser-
vation period being divided into three separate 5-min epochs. In order
to characterize the local frequency of jaw movement activity, a small
group of animals (n=2) was implanted with EMG electrodes into
the temporalis muscle, and then allowed one week to recover. On
the test day, rats received an injection of either 4.0 mg/kg pilocarpine
or 0.5 mg/kg pilocarpine IP. Ten minutes later, recordings were per-
formed for 15 min, as described above.

2.5.2. Experiments 2 and 3: Effect of MSX-3 on tremulous jaw move-
ments induced by the high and low doses of pilocarpine

A group of 30 rats was used to assess the effect of MSX-3 on jaw
movement activity induced by a high (4.0 mg/kg) dose of pilocarpine.
All rats received IP injections of 4.0 mg/kg pilocarpine and were
randomly assigned to receive one of the following doses of MSX-3 or
vehicle: saline vehicle control, 2.50 mg/kg, 5.0 mg/kg, 10.0 mg/kg, or
20.0 mg/kg MSX-3 (n=5 for each group, total n=30). A separate
group of 45 rats was used to assess the effect of MSX-3 on jaw
movement activity induced by a low (0.5 mg/kg) dose of pilocarpine.
All rats received IP injections of 0.5 mg/kg pilocarpine and were
randomly assigned to receive one of the following doses of MSX-3 or
vehicle: saline vehicle control, 2.50 mg/kg, 5.0 mg/kg, 10.0 mg/kg, or
20.0 mg/kg MSX-3 (n=9 for each group, total n=45). For both
experiments, 10 min following their IP injection of either saline
vehicle or MSX-3, rats received their IP injection of pilocarpine and
were immediately placed in the Plexiglas observation chamber and
allowed to habituate for 10 min. After habituation, tremulous jaw
movements were counted for 15 min, with this observation period
being divided into three separate 5-min epochs. Jawmovements were
recorded for each of the five minute epochs, after which both the total
and the average number of jaw movements per 5 min period was
calculated.

2.5.3. Experiments 4 and 5: Effects of SCH 58261 and DPCPX on
tremulous jaw movements induced by the low dose of pilocarpine

A group of 40 rats was used to assess the effect of SCH 58261
on jawmovement activity induced by a 0.5 mg/kg dose of pilocarpine.
All rats received IP injections of 0.5 mg/kg pilocarpine and were
randomly assigned to receive one of the following doses of SCH 58261
or vehicle: 20% ethanol vehicle control, 0.625 mg/kg, 1.25 mg/kg,
2.5 mg/kg, or 5.0 mg/kg SCH58261 (n=8 per group, total n=40).



Fig. 1. Effects of 0.5 and 4.0 mg/kg pilocarpine on tremulous jaw movements. A. Mean
(±SEM) number of jaw movements in rats treated with either saline vehicle or
pilocarpine. *significant difference from control (pb0.001). B and C. Raw EMG traces
(2 s sweeps) from the temporalis muscle of a rat that received 4.0 mg/kg pilocarpine
(B), and another rat that received 0.5 mg/kg pilocarpine (C). During these sweeps, each
rat showed a burst of multiple jaw movements recorded by the observer. The
temporalis muscle is a jaw closing muscle, and these bursts of activity in the 5–6 Hz
frequency range corresponded with the jaw closing phase of each jaw movement. Both
doses of pilocarpine produced a similar local frequency of EMG activity, indicating that
the higher number of jaw movements produced by the 4.0 mg/kg dose of pilocarpine
results from a greater amount of time showing tremulous activity, and not from any
differences in local frequency.
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Twenty minutes following their IP injection of either saline vehicle or
SCH58261, rats received an IP injection of 0.5 mg/kg pilocarpine and
were immediately placed in the Plexiglas observation chamber and
allowed to habituate for 10 min. After habituation, tremulous jaw
movements were tested in themanner described above. An additional
group of 40 rats was used to assess the effect of DPCPX on jaw
movement activity induced by a 0.5 mg/kg dose of pilocarpine. All rats
received IP injections of 0.5 mg/kg pilocarpine and were randomly
assigned to receive one of the following doses of DPCPX or vehicle:
20% ethanol vehicle control, 0.375 mg/kg, 0.75 mg/kg, 1.5 mg/kg, or
3.0 mg/kg DPCPX (n=8 per group, total n=40). Twenty minutes
following their IP injection of either 20% ethanol vehicle or DPCPX,
rats received an IP injection of 0.5 mg/kg pilocarpine, and were
observed in the same manner as described above.

2.5.4. Experiment 6: Effect of DPCPX on pimozide-induced tremulous jaw
movements

A group of 39 rats was used to assess the effect of DPCPX on
pimozide-induced tremulous jawmovement activity. All rats received
IP injections of 1.0 mg/kg pimozide each day for seven days. On day 7
of the subchronic injections, rats were tested for tremulous jaw
movements as described above. Only the rats that had N15 jaw
movements on day 7 were used for the day 8 drug challenge test.
For the day 8 behavioral test, all rats were treated with 1.0 mg/kg
pimozide and were randomly assigned to receive one of the following
doses of DPCPX or vehicle: 20% ethanol vehicle control, 0.375 mg/kg,
0.75 mg/kg, 1.5 mg/kg, or 3.0 mg/kg DPCPX (n=7–8 for each group;
total n=39). Three hours and 30 min following their daily pimozide
injection on day 8, rats received an IP injection of DPCPX, according
to the previously assigned doses. Twenty minutes later, rats were
placed in the Plexiglas observation chamber and allowed to habituate
for 10 min. Following habituation, tremulous jaw movements were
tested in the manner described above.

2.5.5. Experiment 7: In vivo binding assay of MSX–3, SCH 58261, and
DPCPX

A2A receptor occupancy was measured by in vivo binding with [3H]
SCH442416 (Matsuya et al., 2007). Twenty µCi radioligandwas injected
IV in the tail vein. Fifteen minutes after IV injection, the animals were
sacrificed and the striatum dissected out. The tissue was homogenized
in ice cold buffer (5.0 ml 50 mM K2PO4, pH 7.4). Samples were filtered
throughWhatmanGF/C filters and filterswerewashedwith 2×5 ml ice
cold buffer. Filtration was completed 60 s after sacrifice and filters were
counted in a scintillation counter. Protein contentwas determined in all
brain samples and used for normalization. Groups of animals were
treated with vehicle and radioactivity levels in striatum and cerebellum
wereused todetermine total andnon-specific binding. ED50 valueswere
calculated using non-linear regression by Prism (Graph Pad).

2.6. Data analyses

The behavioral data for all experiments were analyzed using a
between-groups analysis of variance (ANOVA). Average tremulous
jaw movements over the three five-min observation epochs were
calculated and then used in the ANOVA calculations. A computerized
statistical program (SPSS 10.1 for Windows) was used to perform
these analyses. When there was a significant ANOVA, planned com-
parisons using the overall error term were used to assess the dif-
ferences between each dose and the control condition; the total
number of comparisons was restricted to the number of treatments
minus one (Keppel, 1991). Effect size calculations (R2 values; Keppel
1991) were performed to assess themagnitude of the treatment effect
(i.e., the size of the treatment effect sum of squares expressed as the
proportion of total sum of squares, which is a marker of the total
variance accounted for by treatment variance; for example R2=0.3
reflects 30% of the variance that is explained by the treatment effect).
3. Results

3.1. Experiment 1: Effects of low or high doses of pilocarpine

Fig. 1A shows the effects of injections of 0.5 and 4.0 mg/kg pilocar-
pine on tremulous jaw movements. ANOVA revealed that there was a
significant overall effect of drug treatment on tremulous jaw move-
ment activity (F(2,8)=816.6, pb0.001). Planned comparisons
showed that both the 0.5 and 4.0 mg/kg pilocarpine treatments dif-
fered significantly from saline (pN0.001). In addition, EMG recordings
during jaw movements were obtained because the low dose of
pilocarpine (0.5 mg/kg) had never been assessed with these methods,
and it is important to determine if this dose of pilocarpine could
inducemovements at a local frequency that is within the parkinsonian
tremor frequency range. Fig. 1B–C displays temporalis EMG traces
from representative animals that received either 0.5 or 4.0 mg/kg
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pilocarpine. It can be seen that both doses of pilocarpine-induced jaw
muscle activity in the 5–6 Hz frequency range.

3.2. Experiments 2 and 3: Effect of MSX-3 on tremulous jaw movements
induced by high and low doses of pilocarpine

Experiment 2 focused upon the effect of the adenosine A2A antag-
onist MSX-3 on the tremulous jawmovements induced by a high dose
(4.0 mg/kg) of pilocarpine. Co-administration of MSX-3 with pilocar-
pine was unable to reduce levels of tremulous jaw movement activity
(Fig. 2A; F(4,25)=0.516, n.s.; R2=0.076). Experiment 3 studied the
ability of the adenosine A2A antagonist MSX-3 to attenuate the trem-
ulous jaw movements induced by a low dose (0.5 mg/kg) of pilocar-
pine (Fig. 2B). There was a significant overall suppressive effect of
MSX-3 on the tremulous jaw movements induced by the 0.5 mg/kg
dose of pilocarpine (F(4,40)=6.54, pb0.001; R2=0.395), with the
5.0, 10.0, and 20.0 mg/kg doses of MSX-3 plus pilocarpine differing
significantly from the vehicle plus pilocarpine control (pb0.01).

3.3. Experiment 4: Effect of SCH 58261 on tremulous jaw movements
induced by a low dose (0.5 mg/kg) of pilocarpine

Experiment 4 assessed the effect of the adenosine A2A antagonist
SCH 58261 on the tremulous jaw movements induced by 0.5 mg/kg
pilocarpine, to assess the generality of the effects of adenosine A2A

antagonism. Co-administration of SCH58261 with this dose of pilocar-
Fig. 2. Effect of the adenosine A2A antagonist MSX-3 on pilocarpine-induced tremulous
jaw movements. Mean (±SEM) number of jaw movements in rats treated with
pilocarpine plus vehicle (0.0), and pilocarpine plus various doses (2.5–20.0 mg/kg) of
MSX-3. A. All rats received 4.0 mg/kg pilocarpine. B. All rats received 0.5 mg/kg
pilocarpine. *significant difference from control (pb0.05).
pine resulted in reduced levels of tremulous jaw movement activity
compared to pilocarpine plus vehicle (Fig. 3); there was a significant
overall effect of SCH58261on the tremulous jawmovements inducedby
0.5 mg/kg pilocarpine (F(4,35)=3.059, pb0.05; R2=.259), with the
0.625, 2.5 and 5.0 mg/kg doses of SCH 58261 plus pilocarpine differing
significantly from the vehicle plus pilocarpine control (pb0.01).

3.4. Experiments 5 and 6: Effect of DPCPX on tremulous jaw movements
induced by a low dose (0.5 mg/kg) of pilocarpine and subchronic ad-
ministration of 1.0 mg/kg pimozide

Experiment 5 focused upon the effect of the adenosine A1 antag-
onist DPCPX on the tremulous jaw movements induced by the low
dose (0.5 mg/kg) of pilocarpine. There was no significant effect of
DPCPX on pilocarpine-induced tremulous jaw movements (F(4,35)=
0.478, pN0.05; R2=0.052; Fig. 4A). Experiment 6 studied the effect of
DPCPX on the tremulous jaw movements induced by repeated injec-
tions of 1.0 mg/kg of the DA D2 antagonist pimozide. During the day
8 challenge test, co-administration of DPCPX with pimozide failed to
affect levels of tremulous jaw movement activity (Fig. 4B; F(4,34)=
0.449, pN0.05; R2=0.050).

3.5. Experiment 7: In vivo binding assay of MSX-3, SCH 58261, and
DPCPX

Although these compounds have been studied extensively using in
vitro binding methods, only SCH 58261 has been studied for its in vivo
occupancy of adenosine A2A receptors (Matsuya et al., 2007).

The results of the in vivo binding study are shown in Fig. 5. MSX-3
and SCH 58261 both showed significant in vivo A2A receptor occu-
pancy, with doses higher than 1.0 mg/kg of both drugs producing
greater than 50% occupancy of striatal A2A receptors (Fig. 5A–B). In
contrast, the doses of DPCPX used in the present experiment did
not yield significant dose-related effect, and there was no substantial
occupancy of striatal adenosine A2A receptors at any dose (Fig. 5C).

4. Discussion

The present results demonstrate that adenosine A2A antagonists
are capable of attenuating the tremulous jaw movements induced by
themuscarinic agonist pilocarpine, provided that a relatively low dose
(0.5 mg/kg) of pilocarpine is used to induce jawmovement activity. In
a previous study that employed a 1.0 mg/kg dose of pilocarpine to
induce jawmovements, it was reported that 5.0 mg/kg SCH 58261 did
Fig. 3. Effect of theadenosineA2A antagonist SCH58261onpilocarpine-induced tremulous
jaw movements. Mean (±SEM) number of jaw movements in rats treated with
pilocarpine plus vehicle (0.0), and pilocarpine plus various doses (0.625–5.0 mg/kg) of
SCH 58261. All rats received 0.5 mg/kg pilocarpine. *significant difference from control
(pb0.05).



Fig. 4. Effect of the adenosine A1 antagonist DPCPX on the tremulous jaw movements
induced by pilocarpine or pimozide. Mean (±SEM) number of jaw movements are
shown. A. All rats received 0.5 mg/kg pilocarpine plus various doses of DPCPX (0.375–
3.0 mg/kg). B. All rats received 1.0 mg/kg pimozide plus various doses of DPCPX (0.375–
3.0 mg/kg).

Fig. 5. Adenosine A2A receptor occupancy (expressed as percent occupancy) as
measured by in vivo binding with [3H]SCH 442416. A. MSX-3. B. SCH 58261. C. DPCPX.
Curve-fitting parameters (ED50 and the 95% confidence intervals) are shown to the
right of each figure. There was no significant fit (i.e., no convergence) for DPCPX, and no
appreciable A2A receptor occupancy.
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not suppress tremulous jaw movement activity (Simola et al., 2006).
The present experiments demonstrated that MSX-3 and SCH 58261,
administered in doses that produce substantial in vivo occupancy of
striatal adenosine A2A receptors, were able to reduce the tremulous
jaw movements induced by 0.5 mg/kg pilocarpine (Figs. 2B and 3).
The results of the Simola et al. (2006) study, together with experi-
ments 2–3 above, indicate that the tremulous jaw movements
induced by higher doses of pilocarpine (e.g. 1.0–4.0 mg/kg) are rela-
tively insensitive to the effects of adenosine A2A antagonists, while a
lower dose of pilocarpine (0.5 mg/kg) produces a jaw movement
response that is sensitive to the effects of adenosine A2A antagonists.
The observation that the dose of cholinomimetic used is a critical
feature of this type of experiment is consistent with previous reports
on the effects of the anticholinesterase tacrine. Although Trevitt et al.
(2009b) reported that the adenosine A2A antagonist SCH 58261 could
not suppress the tremulous jaw movements induced by 5.0 mg/kg
tacrine, SCH 58261 and ST1535 have been found to reduce the
tremulous jaw movements induced by a lower dose (2.5 mg/kg) of
tacrine (Simola et al., 2004, 2006; Tronci et al., 2007). In the present
studies, the baseline level of jaw movement activity was considerably
lower after injections of 0.5 mg/kg pilocarpine compared to the
4.0 mg/kg dose (Fig. 1A), and it is possible that higher doses of
pilocarpine produce a response that is too robust, and not easily
suppressed by adenosine antagonism. The fact that 0.5 mg/kg pilocar-
pine induces a level of jaw movement activity that is readily sup-
pressed by adenosine A2A antagonists, coupled with the observation
that the tremulous jaw movements induced by this dose of pilocar-
pine are characterized by bursts of rhythmic jaw muscle activity that
have a local frequency in the 5–6 Hz range (Fig. 1), which is within the
local frequency range of parkinsonian resting tremor, suggests that
administration of 0.5 mg/kg pilocarpine may be a useful method for
inducing tremulous jaw movement activity in future studies. Further-
more, the present studies provide the first report that an adenosine
A2A antagonist can reduce the motor effects of a muscarinic agonist.

In contrast to the effects of the adenosine A2A selective antagonists
MSX-3 and SCH 58261, the adenosine A1 selective antagonist DPCPX,
given in doses that did not occupy striatal adenosine A2A receptors in
vivo, was not able to attenuate the tremulous jawmovements induced
by 0.5 mg/kg pilocarpine. Furthermore, DPCPX did not suppress the
jaw movements induced by repeated administration of the DA D2

antagonist pimozide. The latter observation is particularly important
in view of previous reports indicating that several adenosine A2A

antagonists can suppress tremulous jaw movement activity that
is induced by interference with DA transmission. The adenosine A2A

antagonists KF 17837 and MSX-3 were reported to suppress the
tremulous jaw movements induced by the D2 antagonist haloperidol
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(Correa et al., 2004; Salamone et al., 2008a). In addition, both MSX-3
and KW6002 (istradefylline) were able to suppress the tremulous jaw
movements induced by the D2 antagonist pimozide (Salamone et al.,
2008a), using methods that were identical to those used in the
present work. MSX-3 also attenuated the tremulous jaw movements
induced by the DA depleting agent reserpine (Salamone et al., 2008a).
In contrast to these relatively consistent effects of adenosine A2A

antagonism, there is conflicting evidence about the role of adenosine
A1 receptors in the regulation of tremor in animal models. Trevitt et al.
(2009b) reported that the adenosine A1 antagonist CPT could
attenuate the tremulous jaw movements induced by the DA antago-
nist haloperidol. However, CPT has a lower selectivity for A1 receptors
relative to A2A receptors compared to DPCPX (Maemoto et al., 1997),
which could make it more difficult to interpret the significance
of effects produced by CPT. Furthermore, the general role of A1

receptors in modulating tremor is unclear; a recent study showed
that harmaline-induced tremor, which has been used as a model of
parkinsonian tremor, could be suppressed by A1 receptors stimula-
tion, and could actually be enhanced by A1 receptor antagonism or
knockout (Bekar et al., 2008).

The results of the present experiments are consistent with other
studies showing differences between the effects of drugs that act upon
adenosine A1 and A2A receptors (Rimondini et al., 1998; Prediger et al.,
2005). In recent studies involving instrumental behaviors, including
operant conditioning andmaze tasks in rats, it was reported that DPCPX
was incapable of reversing the behavioral disruptions produced by D2

antagonism, even though A2A antagonists such as MSX-3 and KW 6002
were effective (Mott et al., 2009; Salamone et al., 2009). Varty et al.
(2008) also observed that DPCPXwas relatively ineffective at producing
antiparkinsonian actions in haloperidol-treatedmonkeys, in contrast to
the effects of the adenosine A2A selective antagonists KW6002 and SCH
412348. Although the 0.375–3.0 mg/kg dose range that was used for
DPCPX in the present study was ineffective at reversing the actions of
pilocarpine and pimozide, this dose range of DPCPX has been shown to
be effective in studies with rats that observed behaviors related to
depression, locomotion, pain perception, memory and other processes
(Aubel et al., 2007; Lobatoet al., 2008;Maioneet al., 2007;Marston et al.,
1998; Prediger and Takahashi, 2005). Thus, it appears that DPCPX,
despite having other types of behavioral actions,may be relativelyweak
at producing antiparkinsonian or antitremor effects. This could indicate
that adenosine A2A antagonists have stronger tremorolytic effects than
highly selective A1 antagonists, although additional A1 antagonists need
to be assessed.

In view of data indicating that cholinomimetic drugs can induce or
exacerbate parkinsonian symptoms in humans (Aarsland et al., 2003;
Arai, 2000; Bourke and Drukenbrod 1998; Cabeza-Alvarez et al., 1999;
Duvoisin, 1967; Gurevich et al., 2006; McSwain and Forman 1995; Ott
and Lannon, 1992; Shea et al., 1998; Song et al., 2008), and that
cholinomimetic-induced tremulous jaw movements in rats are sen-
sitive to several classes of antiparkinsonian drugs (Cousins et al.,
1997; Salamone et al., 1998, 2005), the present results may have
relevance for identifying novel treatments for drug-induced parkin-
sonism. As suggested previously (Correa et al., 2004; Ishiwari et al.,
2007; Salamone et al., 2008a,b; Varty et al., 2008), it is possible that
adenosine A2A antagonists could be useful for treating the motor side
effects of antipsychotic drugs in humans. Furthermore, the present
results, together with those from other laboratories (Simola et al.,
2004, 2006; Tronci et al., 2007), suggest that adenosine A2A antago-
nists could be employed to ameliorate the motor side effects of
cholinomimetic drugs that are used to treat Alzheimer's disease or
other disorders. Althoughmuch research in this area has focused upon
DA/adenosine interactions in neostriatum (Ferré et al., 1997, 2001;
Fuxe et al., 2007; Svenningsson et al., 1999), the present results
indicate that there also are significant interactions between drugs that
act uponmuscarinic acetylcholine and adenosine A2A receptors. How-
ever, it is not clear if these actions are direct or indirect (e.g. Pollack
and Fink 1996). It is possible that the present results are due to direct
interactions between adenosine A2A receptors and muscarinic re-
ceptors that are localized on the same medium spiny cells in
neostriatum. Alternatively, it is possible that tremulous jaw move-
ments are induced by cholinomimetic drugs acting upon muscarinic
M4 receptors that are mostly localized on striatonigral neurons, but
that adenosine A2A antagonists reduce this jaw movement activity by
acting upon another part of the striatal circuitry (i.e., striatopallidal
neurons; Betz et al., 2007, 2009). This behavioral research on the
effects of adenosine A2A receptor antagonists places additional em-
phasis on the importance of characterizing the neural mechanisms
underlying the interactions between basal ganglia muscarinic and
adenosine A2A receptor systems.
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